Hadron PID Considerations in ePHENIX concepts

For seeding the discussion on eRD14 integration options

Jin Huang

Brookhaven National Lab

Evolution of the PHENIX experiment

Documented: http://www.phenix.bnl.gov/plans.html

Current PHFNIX sPHENIX (+fsPHENIX) An FIC detector 14y+ operation Comprehensive central Path of PHENIX upgrade leads 100+MS investment upgrade base on BaBar magnet to a capable EIC detector Broad spectrum of physics Rich jet and beauty quarkonia Large coverage of tracking, (QGP, Hadron Physics, DM) calorimetry and PID physics program → nature of QGP 140+ published papers to Open for new fsPHENIX: forward tracking, date collaboration/new ideas Hcal and muon ID \rightarrow Spin, CNM Last run in this form 2016

~2000

2017→2020

~2025

Time

RHIC: A+A, spin-polarized p+p, spin-polarized p+A

EIC: e+p, e+A

SPHENIX

quick summary and look "forward"

- sPHENIX: major upgrade to the PHENIX experiment aim for data @ 2020
- Physics Goals: detailed study QGP using jets and heavy quarks at RHIC energy region
- Baseline consists of new large acceptance EMCal+HCal built around recently acquired BaBar magnet. Additional tracking also planned

Detailed performance simulation. Simulation/analysis software open access:

https://github.com/sPHENIX-Collaboration/coresoftware

Very positive DOE scientific review Apr 2015.

Forming new scientific collaboration: https://www.bnl.gov/lajudr2015/

- Nov 2015: Cost schedule review
- Dec 2015: first collaboration meeting as new scientific collaboration
- A good foundation for future detector upgrade

Baseline detectors for sPHENIX

sPHENIX MIE, arXiv:1501.06197 [nucl-ex]

In EIC era: concept for an EIC Detector

Working title: "ePHENIX"

Review: "good day-one detector"

"solid foundation for future upgrades"

7≈12 m

eRD14 meeting

z>>10 m

LOI: arXiv:1402.1209

- -1<η<+1 (barrel) : sPHENIX + Compact-TPC + DIRC</p>
- -4<η<-1 (e-going):High resolution calorimeter + GEM trackers
- +1<η<+4 (h-going):</p>
 - 1<η<4 : GEM tracker + Gas RICH
 - ∘ 1<η<2 : Aerogel RICH

Station2

Station4

Jin Huang <i huang@bnl.gov>

Station1

Recent evolving of ePHENIX with sPHENIX

Tracking and PID detectors

Hadron PID Overview

DIRC

- Based on BaBar DIRC design plus compact readout
- Collaborate with TPC dE/dx for hadron ID in central barrel

Aerogel RICH

- eRD11 modular design should work well
- Collaborate with gas RICH to cover 1<n<2
- PID in e-going direction for higher e-beam
- ▶ Gas RICH: eRD6 single gas radiator
- TOF solution: next few slides

Coverage of each subsystem quantized in SIDIS kinematic space coverage (x, Q2, z)

Another PID detector configuration Full detector TOF solution, eRD10

Gas RICH - The Design

- Hadron ID for p>10GeV/c require gas Cherenkov
 - CF₄ gas used, similar to LHC_b
 RICH
- Beautiful optics using spherical mirrors
- Photon detection using Csl-coated GEM in hadron blind mode
 thin and magnetic field
- Active R&D:

resistant

- Generic EIC R&D program
- recent beam tests by the stony brook group

Field effect - distortion for RICH

- Field calculated numerically with field return
- Field lines mostly parallel to tracks in the RICH volume with the yoke
- We can estimate the effect through field simulations

A RICH Ring:

Photon distribution due to tracking bending only

Field effect – Radius uncertianty of RICH Ring

Quantify ring radius error

In the respect of PID: minor effect

Summary

- "ePHENIX" concept based on sPHENIX upgrade
- Evolving concepts of full detector hadron PID
 - H-going: AeroGel RICH (medium momentum range) + Gas RICH (high-p range)
 - Barrel: TPC (low momentum range) + DIRC (medium momentum range)
 - E-going: AeroGel RICH
 - Full detector TOF solution also considered

Extra Information

Use of calorimeter for EIC physics

- Electron identification (e-EMC, barrel EMC)
- Electron kinematics measurement (e-EMC, barrel EMC)
- DIS kinematics using hadron final states (barrel EMC/HCal, h-EMC/HCal)
- Photon ID for DVCS (All EMC)
- Diffractive ID (h-HCal)
- High momentum track energy measurement (h-HCal)

